Canyon Dust Storm, Cloudy Conditions for Pathfinder Landing on Mars

 Canyon Dust Storm, Cloudy Conditions for Pathfinder Landing on Mars

Hubble Space Telescope images of Mars, taken on June 27, 1997, reveal a significant dust storm which fills much of the Valles Marineris canyon system and extends into Xanthe Terra, about 600 miles (1000 kilometers) south of the Pathfinder spacecraft landing site.

It is difficult to predict the evolution of this storm and whether it will affect the Pathfinder observations.

The pictures were taken in order to monitor the site in Ares Vallis where the Pathfinder spacecraft will land on July 4.

The two images of Mars at the top of the figure are Hubble observations from June 27 (right) and May 17 (left). Visual comparison of these two images clearly shows the dust storm between 5 and 7 o'clock and about 2/3 of the way from the center to the southern edge of the June image.

The digital data were projected to form the map of the equatorial portion of the planet which is shown in the bottom portion of the figure. The green cross marks the location of the Pathfinder landing site, and the yellowish ribbon of dust which runs horizontally across the bottom of the map traces the location of Valles Marineris, a system of canyons which would stretch from Los Angeles to New York if placed on Earth.

Most of the dust is confined within the canyons, which are up to 5-8 kilometers deep. The thickness of the dust cloud near the eastern end of the storm is similar to that observed by Viking lander 1 during the first of the two 1977 global dust storms which it studied.

Other interesting features appear in this image. The northwestern portions of the planet are enveloped in unusually thick water ice clouds, similar to cirrus clouds on Earth; some clouds extend as far as Lunae Planum, the slightly darker region about halfway from the center to the left side of the map. The dark spot near the terminator (boundary between day and night) at about 9:00 in the June 27 planet image is Ascraeus Mons, a 27 kilometer high volcano, protruding through the clouds.

The remnant north polar cap, composed of water ice, is at the top of the May and June images, and a bluish south polar hood, composed of water ice clouds, is seen along the southern edge. Because the planet's axis is tipped towards us during this season, we cannot see the south polar cap, which is in winter darkness.

Credits

Phil James (Univ. Toledo), Steve Lee (Univ. Colorado) and Mike Wolff (Univ. Toledo) and NASA

About The Object
Object Name Mars
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.