Hubble Measures Velocity of Gas Orbiting Black Hole

 Hubble Measures Velocity of Gas Orbiting Black Hole

A schematic diagram of velocity measurements of a rotating disk of hot gas in the core of active galaxy M87.

The measurement was made by studying how the light from the disk is redshifted and blueshifted – as part of the swirling disk spins in earth's direction and the other side spins away from earth. The gas on one side of the disk is speeding away from Earth, at a speed of about 1.2 million miles per hour (550 kilometers per second). The gas on the other side of the disk is orbiting around at the same speed, but in the opposite direction, as it approaches viewers on Earth.

This high velocity is the signature of the tremendous gravitational field at the center of M87. This is clear evidence that the region harbors a massive black hole, since it contains only a fraction of the number of stars that would be necessary to create such a powerful attraction.

A black hole is an object that is so massive yet compact nothing can escape its gravitational pull, not even light. The object at the center of M87 fits that description. It weights as much as three billion suns, but is concentrated into a space no larger than our solar system.

The observations were made with HST's Faint Object Spectrograph.

Credits

Holland Ford, Space Telescope Science Institute/Johns Hopkins University; Richard Harms, Applied Research Corp.; Zlatan Tsvetanov, Arthur Davidsen, and Gerard Kriss at Johns Hopkins; Ralph Bohlin and George Hartig at Space Telescope Science Institute; Linda Dressel and Ajay K. Kochhar at Applied Research Corp. in Landover, Md.; and Bruce Margon from the University of Washington in Seattle.; NASA

About The Object
Object Name M87, NGC 4486
R.A. Position 12h 30m 49.42s
Dec. Position 12° 23' 27.99"
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.