Hubble Discovers Powerful Laser Beamed from Chaotic Star

 Hubble Discovers Powerful Laser Beamed from Chaotic Star

This is an artist's concept of a gas cloud (left) that acts as a natural ultraviolet laser, near the huge, unstable star Eta Carinae (right) - one of most massive and energetic stars in our Milky Way Galaxy. The super-laser was identified by a team led by Kris Davidson of the University of Minnesota, and including nine other collaborators in the U.S. and Sweden during spectroscpic observations made with the Goddard High Resolution spectrograph aboard NASA's Hubble Space Telescope. Since it's unlikely that a single beam from the cloud would happen to be precisely aimed in earth's driection, the astronomers conclude that numerous beams must be radiating from the cloud in all directions - beams from a dance hall mirror-ball. The interstellar laser may result from Eta Carinae's violently chaotic eruptions, illustrated here as a reddish (due to light scattering by dust) outflow from the bright star. A laser, (an acronym for Light Amplification by Stimulated Emission of Radiation) creates an intense coherent beam of light when atoms or molecules in a gas, liquid or solid medium, force an incoming mix of wavelengths (or colors) of light to work in phase, or, at the same wavelength. Though a natural infrared laser was identified in space in 1995, lasers are very rare in space and nothing like the UV laser has ever been seen before. Eta Carinae is several million times brighter than the Sun, and one hundred times as massive. The superstar, located 8,000 light-years away in the souther constellation Carina, underwent a colossal outburst 150 years ago.

Credits

Illustration courtesy: James Gitlin/STScI

About The Object
Object Name Eta Carinae
R.A. Position 10h 45m 3.59s
Dec. Position -59° 41' 4.26"
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.