
The Carina Nebula is an immense cloud of gas and dust where a maelstrom of star birth and death is taking place. The nebula is located an estimated 7,500 light-years away in the southern constellation Carina the Keel (part of the older, larger southern constellation Argo Navis, the ship of Jason and the Argonauts).
Hubble's view of the nebula shows star birth in a new level of detail. The nebula's fantastic landscape is sculpted by the action of outflowing winds and scorching ultraviolet radiation from the monster stars that inhabit this inferno. In the process, these stars are shredding the surrounding material that is the last vestige of the giant cloud from which the stars were born. The immense nebula contains at least a dozen brilliant stars that are roughly estimated to be at least 50 to 100 times the mass of our Sun.
Three million years ago, the nebula's first generation of newborn stars condensed and ignited in the middle of a huge cloud of cold molecular hydrogen. Radiation from these stars carved out an expanding bubble of hot gas. The isolated clumps of dark clouds scattered across the nebula are nodules of dust and gas that are resisting being eaten away by photoionization, the process by which the energy from light removes electrons from atoms.
The blast of stellar winds and blistering ultraviolet radiation within the cavity is now compressing the surrounding walls of cold hydrogen. This is triggering a second stage of new star formation. Our Sun and our solar system may have been born inside such a cosmic crucible 4.6 billion years ago. The Carina Nebula reveals the genesis of star birth as it commonly occurs along the dense spiral arms of a galaxy such as our Milky Way.
One of the Carina Nebula's most famous denizens is the unstable, behemoth double-star system Eta Carinae. Among the largest and brightest star systems in our Milky Way Galaxy, this stellar duo is known for its spectacular, periodic outbursts. The larger of the pair is an enormous 90 solar masses, while its smaller companion is 30 solar masses. The more massive of these two stars is destined to explode soon as a supernova.
A science team led by Armin Rest of the Space Telescope Science Institute used Hubble to study a "light echo" from an eruption of Eta Carinae that took place 170 years earlier. Known as "the Great Eruption," this 20-year event in the mid-1800s caused Eta Carinae to become the second brightest star in the sky. Some of the light from the eruption took an indirect path to Earth and is just arriving now, providing an opportunity to analyze the outburst in detail. The wayward light was heading in a different direction, away from our planet, when it bounced off dust clouds lingering far from the turbulent stars and was rerouted to Earth. The observations of Eta Carinae's light echo are providing new insight into the behavior of powerful massive stars on the brink of detonation.
Astronomers also have used Hubble's detailed observations of the Carina Nebula to study small globules within it. For example, a team of astronomers led by Nathan Smith of the University of California, Berkeley, found that even small globules appear to be forming stars, and that some could be analogs to the cloud in which our own Sun and solar system formed. Another team, led by Tia Grenman at the Lulea University of Technology in Sweden, found that some globules are so small they don't even have enough mass to form a star but could instead form free-floating planets that do not orbit any star.
Constellation: Carina
Distance: 7,500 light-years (2,300 parsecs)
Instrument: Hubble Advanced Camera for Surveys, and CTIO 4m Blanco Telescope MOSAIC2
Image Filters: ACS: F658N (H-alpha+[N II]); CTIO: ([O III] 501nm), (H-alpha+[N II] 658nm), ([S II] 672+673nm)
About The Object | |
---|---|
Object Name | Carina Nebula, NGC 3372 |
About The Object | |
---|---|
Object Name | A name or catalog number that astronomers use to identify an astronomical object. |
Object Description | The type of astronomical object. |
R.A. Position | Right ascension – analogous to longitude – is one component of an object's position. |
Dec. Position | Declination – analogous to latitude – is one component of an object's position. |
Constellation | One of 88 recognized regions of the celestial sphere in which the object appears. |
Distance | The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs. |
Dimensions | The physical size of the object or the apparent angle it subtends on the sky. |
About The Data | |
Data Description |
|
Instrument | The science instrument used to produce the data. |
Exposure Dates | The date(s) that the telescope made its observations and the total exposure time. |
Filters | The camera filters that were used in the science observations. |
About The Image | |
Image Credit | The primary individuals and institutions responsible for the content. |
Publication Date | The date and time the release content became public. |
Color Info | A brief description of the methods used to convert telescope data into the color image being presented. |
Orientation | The rotation of the image on the sky with respect to the north pole of the celestial sphere. |