
This meteorite is a sample of the crust of the asteroid Vesta, which is only the third solar system object beyond Earth where scientists have a laboratory sample (the other extraterrestrial samples are from Mars and the Moon). The meteorite is unique because it is made almost entirely of the mineral pyroxene, common in lava flows. The meteorite's mineral grain structure also indicates it was once molten, and its oxygen isotopes are unlike oxygen isotopes found for all other rocks of the Earth and Moon. The meteorite's chemical identity points to the asteroid Vesta because it has the same unique spectral signature of the mineral pyroxene. The meteorite also has the same pyroxene signature as other small asteroids, recently discovered near Vesta, that are considered "chips" blasted off Vesta's surface. This debris extends all the way to an "escape hatch" region in the asteroid belt called the Kirkwood gap. This region is swept free of asteroids because Jupiter's gravitational pull removes material from the main belt and hurls it onto a new orbit that crosses Earth's path around the Sun. The meteorite probably followed this route to Earth. It was torn off Vesta's surface as part of a larger fragment. Subsequent collisions broke apart the parent fragment and threw pieces toward the Kirkwood gap and onto a collision course toward Earth. The fragment's journey ended in 1960 when it fell in Western Australia. NASA's Hubble Space Telescope observations further confirm this scenario by revealing a giant impact basin on the 325-mile (525 km) diameter asteroid. The ancient impact was so powerful, it tore off a piece of the asteroid's crust, exposing a deeper mantle of rock. Most of the identified meteorites from Vesta are in the care of the Western Australian Museum. This 1.4 pound (631 gm) specimen comes from the New England Meteoritical Services. It is a complete specimen measuring 3.7 inch x 3.1 inch x 3.4 inch (9.6 cm x 8.1 cm x 8.7 cm) showing the fusion crust, evidence of the last stage in its journey to Earth.
Credits
Photo Credit: R. Kempton (New England Meteoritical Services)About The Object | |
---|---|
Object Name | Vesta |
About The Object | |
---|---|
Object Name | A name or catalog number that astronomers use to identify an astronomical object. |
Object Description | The type of astronomical object. |
R.A. Position | Right ascension – analogous to longitude – is one component of an object's position. |
Dec. Position | Declination – analogous to latitude – is one component of an object's position. |
Constellation | One of 88 recognized regions of the celestial sphere in which the object appears. |
Distance | The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs. |
Dimensions | The physical size of the object or the apparent angle it subtends on the sky. |
About The Data | |
Data Description |
|
Instrument | The science instrument used to produce the data. |
Exposure Dates | The date(s) that the telescope made its observations and the total exposure time. |
Filters | The camera filters that were used in the science observations. |
About The Image | |
Image Credit | The primary individuals and institutions responsible for the content. |
Publication Date | The date and time the release content became public. |
Color Info | A brief description of the methods used to convert telescope data into the color image being presented. |
Orientation | The rotation of the image on the sky with respect to the north pole of the celestial sphere. |