Hubble Sees Detailed New Structures in Three Radio Galaxies

 Hubble Sees Detailed New Structures in Three Radio Galaxies

These Hubble Space Telescope images, combined with radio maps produced by the Very Large Array Radio Interferometer (blue contour lines), show surprisingly varied and intricate structures of gas and stars that suggest the mechanisms powering radio galaxies are more complex than thought previously. The bizarre, never before seen detail may be a combination of light from massive star forming regions, small satellite dwarf galaxies, and bow shocks caused by jets of hot gas blasted out of the galaxies' cores by suspected black holes.

[LEFT] - 3C265. Hubble resolves numerous bright star clusters or dwarf "satellite" galaxies surrounding a bright central compact structure. The line corresponds to the axis of the galaxy's radio emissions, which unlike other radio galaxies, is in a different direction from the optical region. The star forming regions might result from a collision between galaxies. The jet that produces the radio emissions might have further intensified star formation.

[CENTER] - 3C324. A number of small interacting components are distributed roughly along the radio axis in this source. Comparison of the Hubble image with that from the United Kingdom Infrared Telescope suggests that the central regions of this galaxy are obscured by a large dust lane.

[RIGHT] - 3C368. One of the best studied radio galaxies, this image is composed of a very smooth cigar-shaped emission region closely aligned with the radio axis, upon which is superimposed a string of bright knots that might be stars or dust. This suggests that a jet of high speed gas, presumably ejected from a black hole at the core of the galaxy, might be triggering star formation along its path.

Credits

M. Longair (Cambridge University, England), NASA, and NRAO

About The Object
Object Name 3C265, 3C324, 3C368
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.