
Two Hubble Space Telescope images of Mars, taken about a month apart on September 18 and October 15, 1996, reveal a state-sized dust storm churning near the edge of the Martian north polar cap. The polar storm is probably a consequence of large temperature differences between the polar ice and the dark regions to the south, which are heated by the springtime sun. The increased sunlight also causes the dry ice in the polar cap to sublime and shrink.
Mars is famous for large, planet-wide dust storms. Smaller storms resembling the one seen here were observed in other regions by Viking orbiters in the late 1970s. However, this is the first time that such an event has been caught near the receding north polar cap. The Hubble images provide valuable new insights into the behavior of localized dust storms on Mars, which are typically below the resolution of ground-based telescopes. This kind of advanced planetary "weather report" will be invaluable for aiding preparation for the landing of NASA's Pathfinder spacecraft in July 1997 and the arrival of Mars Global Surveyor orbiter in September 1997.
Top (September 18, 1996) - The salmon colored notch in the white north polar cap is a 600-mile (1,000 kilometer) long storm - nearly the width of Texas. The bright dust can also be seen over the dark surface surrounding the cap, where it is caught up in the Martian jet stream and blown easterly. The white clouds at lower latitudes are mostly associated with major Martian volcanos such as Olympus Mons. This image was taken when Mars was more than 186 million miles (300 million kilometers) from Earth, and the planet was smaller in angular size than Jupiter's Great Red Spot!
Bottom (October 15, 1996) - Though the storm has dissipated by October, a distinctive dust-colored comma-shaped feature can be seen curving across the ice cap. The shape is similar to cold fronts on Earth, which are associated with low pressure systems. Nothing quite like this feature has been seen previously either in ground-based or spacecraft observation. The snow line marking the edge of the cap receded northward by approximately 120 miles (200 kilometers), while the distance to the Red Planet narrowed to 170 million miles (275 million kilometers).
Technical notes: To help compare locations and sizes of features, map projections (right of each disk) are centered on the geographic north pole. Maps are oriented with 0 degrees longitude at the top and show meridians every 45 degrees of longitude (longitude increases clockwise); latitude circles are also shown for 40, 60, and 80 degrees north latitude. The color images were assembled from separate exposures taken with the Wide Field Planetary Camera 2.
Credits
James Bell III (Cornell University), Todd Clancy (Space Science Institute), Phil James (University of Toledo), Steve Lee (University of Colorado), Leonard Martin (Lowell Observatory), Michael Wolff (University of Toledo), and NASAAbout The Object | |
---|---|
Object Name | Mars |
About The Object | |
---|---|
Object Name | A name or catalog number that astronomers use to identify an astronomical object. |
Object Description | The type of astronomical object. |
R.A. Position | Right ascension – analogous to longitude – is one component of an object's position. |
Dec. Position | Declination – analogous to latitude – is one component of an object's position. |
Constellation | One of 88 recognized regions of the celestial sphere in which the object appears. |
Distance | The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs. |
Dimensions | The physical size of the object or the apparent angle it subtends on the sky. |
About The Data | |
Data Description |
|
Instrument | The science instrument used to produce the data. |
Exposure Dates | The date(s) that the telescope made its observations and the total exposure time. |
Filters | The camera filters that were used in the science observations. |
About The Image | |
Image Credit | The primary individuals and institutions responsible for the content. |
Publication Date | The date and time the release content became public. |
Color Info | A brief description of the methods used to convert telescope data into the color image being presented. |
Orientation | The rotation of the image on the sky with respect to the north pole of the celestial sphere. |