
On March 11, 1991, the Wide Field/Planetary Camera on NASA's Hubble Space Telescope observed Jupiter for the first time. This "true color" picture of the southeast quadrant of the planet shows a striking oval-shaped dark ring on the left and the Great Red Spot just rotating out of view on the right aide. These features are thought to be very large hurricane-like structures where warmer gases carry ammonia ice crystals from deep in the Jovian atmosphere up above the top of the normal cloud layers that shroud Jupiter. Jovian clouds are thought to be colored by small amounts of sulfur, phosphorus and carbon compounds in the ice crystals. This picture has about the same resolution (0.15 arcseconds) as voyager pictures taken 5 days before encounter in 1979. This will allow a continuation of the study of Jovian wind velocities begun by voyager and allow expansion of this program into the ultraviolet and infrared where clouds form at different heights in the atmosphere. The blue and blue-green bands to the right of the edge of Jupiter are artifacts due to the rotation of the planet during the six minutes between the separate blue, green and red exposures used to make the color picture. The Wide Field/Planetary Camera was designed and built by NASA's Jet Propulsion Laboratory, of the California Institute of Technology, in Pasadena, California.
Credits
Credit: NASA, ESA, and STScIAbout The Object | |
---|---|
Object Name | Jupiter |
About The Object | |
---|---|
Object Name | A name or catalog number that astronomers use to identify an astronomical object. |
Object Description | The type of astronomical object. |
R.A. Position | Right ascension – analogous to longitude – is one component of an object's position. |
Dec. Position | Declination – analogous to latitude – is one component of an object's position. |
Constellation | One of 88 recognized regions of the celestial sphere in which the object appears. |
Distance | The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs. |
Dimensions | The physical size of the object or the apparent angle it subtends on the sky. |
About The Data | |
Data Description |
|
Instrument | The science instrument used to produce the data. |
Exposure Dates | The date(s) that the telescope made its observations and the total exposure time. |
Filters | The camera filters that were used in the science observations. |
About The Image | |
Image Credit | The primary individuals and institutions responsible for the content. |
Publication Date | The date and time the release content became public. |
Color Info | A brief description of the methods used to convert telescope data into the color image being presented. |
Orientation | The rotation of the image on the sky with respect to the north pole of the celestial sphere. |