Proper Motion Path of Proxima Centauri

 Proper Motion Path of Proxima Centauri

This plot shows the projected motion of the red dwarf star Proxima Centauri (green line) over the next decade, as plotted from Hubble Space Telescope observations. Because of parallax due to Earth's motion around the Sun, the path appears scalloped. Because Proxima Centauri is the closest star to our Sun (distance, 4.2 light-years), its angular motion across the sky is relatively fast compared to much more distant background stars. This means that in 2014 and 2016 Proxima Centauri will pass in front of two background stars that are along its path. This affords astronomers a rare opportunity to study warping of space by Proxima's gravity, as will be evident in the apparent displacement of the two stars in sky photographs. This effect is called gravitational lensing. The amount of warping will be used to calculate a precise mass for Proxima Centauri and look for the gravitational footprint and any planets orbiting the star. The background image shows a wider view of the region of sky in the southern constellation Centaurus that Proxima is traversing.

Credits

NASA, ESA, K. Sahu and J. Anderson (STScI), H. Bond (STScI and Pennsylvania State University), M. Dominik (University of St. Andrews), and Digitized Sky Survey (STScI/AURA/UKSTU/AAO)

About The Object
Object Name Proxima Centauri, Alpha Centauri C
Object Description Nearby Star (inset)
R.A. Position 14h 29m 35.0s
Dec. Position -62° 40' 45.99"
Constellation Centaurus
Distance 4.2 light-years (1.3 parsecs)
About The Data
Data Description The image was created from Hubble data from proposal : K. Sahu (STScI), H. Bond (STScI and Pennsylvania State University), J. Anderson (STScI), and M. Dominik (University of St. Andrews)
Instrument DSS (starfield) and HST>WFC3/UVIS (inset)
Exposure Dates October 1, 2012, Exposure Time: 175 seconds
Filters WFC3/UVIS: F555W (V) (inset)
About The Image
Compass Image Proper Motion Path of Proxima Centauri
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.