
As if this Hubble Space Telescope picture isn't cluttered enough with myriad galaxies, nearby asteroids photobomb the image, their trails sometimes mimicking background astronomical phenomena.
The stunningly beautiful galaxy cluster Abell 370 contains an astounding assortment of several hundred galaxies tied together by the mutual pull of gravity. Located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster, this immense cluster is a rich mix of a variety of galaxy shapes.
Entangled among the galaxies are thin, white trails that look like curved or S-shaped streaks. These are trails from asteroids that reside, on average, only about 160 million miles from Earth — right around the corner in astronomical terms. The trails appear in multiple Hubble exposures that have been combined into one image. Of the 22 total asteroid sightings for this field, five are unique objects. These asteroids are so faint that they were not previously identified.
The asteroid trails look curved due to an observational effect called parallax. As Hubble orbits around Earth, an asteroid will appear to move along an arc with respect to the vastly more distant background stars and galaxies.
This parallax effect is somewhat similar to the effect you see from a moving car, in which trees by the side of the road appear to be passing by much more rapidly than background objects at much larger distances. The motion of Earth around the Sun, and the motion of the asteroids along their orbits, are other contributing factors to the apparent skewing of asteroid paths.
All the asteroids were found manually, the majority by "blinking" consecutive exposures to capture apparent asteroid motion. Astronomers found a unique asteroid for every 10 to 20 hours of exposure time.
These asteroid trails should not be confused with the mysterious-looking arcs of blue light that are actually distorted images of distant galaxies behind the cluster. Many of these far-flung galaxies are too faint for Hubble to see directly. Instead, in a dramatic example of "gravitational lensing," the cluster functions as a natural telescope, warping space and affecting light traveling through the cluster toward Earth.
The Frontier Fields program is a collaboration among NASA's Great Observatories and other telescopes to study six massive galaxy clusters and their effects. Using a different camera, pointing in a slightly different direction, Hubble photographed six so-called "parallel fields" at the same time it photographed the massive galaxy clusters. This maximized Hubble's observational efficiency in doing deep space exposures.
This picture was assembled from images taken in visible and infrared light. The field's position on the sky is near the ecliptic, the plane of our solar system. This is the zone in which most asteroids reside, which is why Hubble astronomers saw so many crossings. Hubble deep-sky observations taken along a line-of-sight near the plane of our solar system commonly record asteroid trails.
The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.
Credits
NASA, ESA, and B. Sunnquist and J. Mack (STScI)Acknowledgment: NASA, ESA, and J. Lotz (STScI) and the HFF Team
About The Object | |
---|---|
Object Name | Galaxy Cluster Abell 370 |
Object Description | Asteroids in Foreground of Hubble Frontier Fields Image of Abell 370 |
R.A. Position | 02:39:50.5 |
Dec. Position | −01:35:08 |
Constellation | Cetus |
Distance | 4 billion light-years (to Abell 370) |
Dimensions | Image is 2 arcmin across (about 2.33 million light-years at distance of Abell 370) |
About The Data | |
Data Description | Abell 370 is part of the Frontier Fields Program. These data are from the HST proposals (PI: E. Hu, University of Hawaii), (PI: K. Noll, GSFC), (PI: J.-P. Kneib, Laboratoire d'Astrophysique de Marseille), (PI: T. Treu, UCLA), (PI: S. Rodney, JHU), (PI: J. Lotz, STScI), and (R. Kirshner, Harvard University). For more information, see . |
Instrument | HST ACS/WFC; WFC3/IR |
Exposure Dates | September 2009 - February 2015 |
Filters | ACS/WFC: F435W, F606W, and F814W; WFC3/IR: F105W, F125W, F140W, and F160W |
About The Image | |
Color Info | This image is a composite of separate exposures made by the WFC3 instrument on the Hubble Space Telescope using two different cameras and filters isolating the light of specific elements or of specific broad wavelength ranges. The color arises by assigning different hues (colors), to each monochromatic image. In this case, the colors are: blue WFC3/UVIS F435W + F606W, green WFC3/UVIS F814W + WFC3/IR F015W, orange/red WFC3/IR F125W + F140W + F160W. |
Compass Image | ![]() |
About The Object | |
---|---|
Object Name | A name or catalog number that astronomers use to identify an astronomical object. |
Object Description | The type of astronomical object. |
R.A. Position | Right ascension – analogous to longitude – is one component of an object's position. |
Dec. Position | Declination – analogous to latitude – is one component of an object's position. |
Constellation | One of 88 recognized regions of the celestial sphere in which the object appears. |
Distance | The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs. |
Dimensions | The physical size of the object or the apparent angle it subtends on the sky. |
About The Data | |
Data Description |
|
Instrument | The science instrument used to produce the data. |
Exposure Dates | The date(s) that the telescope made its observations and the total exposure time. |
Filters | The camera filters that were used in the science observations. |
About The Image | |
Image Credit | The primary individuals and institutions responsible for the content. |
Publication Date | The date and time the release content became public. |
Color Info | A brief description of the methods used to convert telescope data into the color image being presented. |
Orientation | The rotation of the image on the sky with respect to the north pole of the celestial sphere. |