
To kick off Hubble's 25th year in orbit, astronomers used the venerable telescope to revisit one of its most iconic subjects, the so-called "Pillars of Creation" in the Eagle Nebula (M16). Three towers of gas and dust, standing light-years tall, are giving birth to new stars, buried within their dusty spires.
The pillars became famous after Hubble first imaged them in 1995 using the Wide-Field Planetary Camera 2. The features were observed again in late 2014 with that instrument' more advanced replacement, the Wide Field Camera 3. With its higher resolution, the new camera provides a sharper view of the pillars and also presents a wider vista, showing the base of the pillars and more of the region surrounding them.
In addition, the new observations captured a portrait of the pillars in infrared light, as well as in visible light. The longer wavelengths of infrared light pass more easily through the dusty environs, allowing us to see more of the wispy details and the stars normally hidden inside or behind the pillars when viewed in visible light.
By comparing Hubble's original image of the pillars to the new one, astronomers also noticed changes in a jet-like feature shooting away from one of the newborn stars within the pillars. The jet grew 60 billion miles longer in the time between observations, suggesting material in the jet was traveling at a speed of about 450,000 miles per hour.
Such observations of the details and changes in the pillars of the Eagle Nebula, and of observations near and far throughout the universe, have been made possible by Hubble’s viewpoint beyond Earth's atmosphere, by its technical upgrades over the years, and the longevity of its career.
Constellation: Serpens
Distance: 6,500 light-years (2,000 parsecs)
Instrument: WFC3/UVIS
Image Filters: F502N ([O III]), F657N (Hα + [N II]), F673N ([S II])
About The Object | |
---|---|
Object Name | M16, Eagle Nebula, NGC 6611 |
About The Object | |
---|---|
Object Name | A name or catalog number that astronomers use to identify an astronomical object. |
Object Description | The type of astronomical object. |
R.A. Position | Right ascension – analogous to longitude – is one component of an object's position. |
Dec. Position | Declination – analogous to latitude – is one component of an object's position. |
Constellation | One of 88 recognized regions of the celestial sphere in which the object appears. |
Distance | The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs. |
Dimensions | The physical size of the object or the apparent angle it subtends on the sky. |
About The Data | |
Data Description |
|
Instrument | The science instrument used to produce the data. |
Exposure Dates | The date(s) that the telescope made its observations and the total exposure time. |
Filters | The camera filters that were used in the science observations. |
About The Image | |
Image Credit | The primary individuals and institutions responsible for the content. |
Publication Date | The date and time the release content became public. |
Color Info | A brief description of the methods used to convert telescope data into the color image being presented. |
Orientation | The rotation of the image on the sky with respect to the north pole of the celestial sphere. |