Hubble Detects Gas Filament Eclipsing Black Hole

 Hubble Detects Gas Filament Eclipsing Black Hole

This diagram shows the position of a dark, absorbing cloud of material located high above the supermassive black hole and accretion disk in the center of the active galaxy NGC 5548. The Hubble Space Telescope didn't directly photograph the intervening cloud, but through spectroscopy noted its passage in front of the black hole. Numerous other filaments twist around the black hole as they are swept away by a torrent of radiation "winds."

Credits

NASA, ESA, and A. Feild (STScI)

About The Object
Object Description Seyfert Galaxy with Black Hole
R.A. Position 14h 17m 59s.53
Dec. Position 25° 08' 12".44
Constellation Boötes
About The Data
Data Description The image was created from Hubble data from the following proposals: , PI: J. Kaastra (SRON Utrecht, the Netherlands) and , PI: B. Peterson (Ohio State University). The science team comprises: J. Kaastra (SRON Utrecht/Universiteit Utrecht/Leiden University, the Netherlands), G. Kriss (STScI/JHU, Baltimore, Maryland, USA), M. Cappi (INAF-IASF Bologna, Italy), M. Mehdipour (SRON Utrecht, the Netherlands/University College of London, Holmbury St. Mary, UK), P.-O. Petrucci (University Grenoble Alpes, CNRS, France), K. Steenbrugge (Universidad Católica del Norte, Antofagasta, Chile/University of Oxford, UK), N. Arav (Virginia Tech, Blacksburg, Virginia, USA), E. Behar (Technion-Israel Institute of Technology, Haifa, Israel), S. Bianchi (Università degli Studi Roma Tre, Italy), R. Boissay (University of Geneva, Switzerland), G. Branduardi-Raymont (MSSL/University College of London, Holmbury St. Mary, UK), C. Chamberlain (Virginia Tech, Blacksburg, Virginia, USA), E. Costantini (SRON Utrecht, the Netherlands), J. Ely (STScI, Baltimore, Maryland, USA), J. Ebrero (SRON Utrecht, the Netherlands/ESAC, Spain), L. Di Gesu (SRON Utrecht, the Netherlands), F. Harrison (California Institute of Technology, Pasadena, California, USA), S. Kaspi (Technion-Israel Institute of Technology, Haifa, Israel), J. Malzac (Université de Toulouse/CNRAS, France), B. De Marco (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), G. Matt (Università degli Studi Roma Tre, Italy), P. Nandra (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), S. Paltani (University of Geneva, Switzerland), R. Person (St. Jorioz, France), B. Peterson (Ohio State University, Columbus, USA), C. Pinto (University of Cambridge, UK), G. Ponti (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), F. Pozo Nuñez (Ruhr-Universität Bochum, Germany), A. De Rosa (INAF/IAPS, Roma, Italy), H. Seta (Rikkyo University, Tokyo, Japan), F. Ursini (University of Grenoble, CNRS, France), C. de Vries (SRON Utrecht, the Netherlands), D. Walton (California Institute of Technology, Pasadena, California, USA), and M. Whewell (MSSL/University College of London, Holmbury St. Mary, UK).
Instrument HST>COS
Filters Gratings: G130M and G160M
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.