Saturn Lyman-alpha Image

 Saturn Lyman-alpha Image

This is a composite image showing the Saturn Lyman-alpha bulge, an emission from hydrogen which is a persistent and unexpected excess detected by three distinct NASA missions, namely Voyager 1, Cassini, and the Hubble Space Telescope between 1980 and 2017. A Hubble near-ultraviolet image, obtained in 2017 during the Saturn summer in the northern hemisphere, is used as a reference to sketch the Lyman-alpha emission of the planet. The rings appear much darker than the planet's body because they reflect much less ultraviolet sunlight. Above the rings and the dark equatorial region, the Lyman-alpha bulge appears as an extended (30 degree) latitudinal band that is 30 percent brighter than the surrounding regions. A small fraction of the southern hemisphere appears between the rings and the equatorial region, but it is dimmer than the northern hemisphere. North of the bulge region (upper-right portion of image), the disk brightness declines gradually versus latitude toward the bright aurora region that is here shown for reference (not at scale). A dark spot inside the aurora region represents the footprint of the spin axis of the planet.

It's believed that icy rings particles raining on the atmosphere at specific latitudes and seasonal effects cause an atmospheric heating that makes the upper atmosphere hydrogen reflect more Lyman-alpha sunlight in the bulge region. This unexpected interaction between the rings and the upper atmosphere is now investigated in depth to define new diagnostic tools for estimating if distant exoplanets have extended Saturn-like ring systems.

Credits

Science

NASA, ESA, Lotfi Ben-Jaffel (IAP & LPL)

About The Object
Object Name Saturn
Object Description Gas giant planet
Distance About 990 million miles from Earth
About The Data
Data Description The HST observations include those from program (L. Ben-Jaffel)
Instrument STIS
Exposure Dates August 2017
Filters MIRFUV, E140H
About The Image
Color Info The image is an exposure acquired by the STIS instrument on the Hubble Space Telescope. The color results from assigning a blue hue to a monochromatic (grayscale) image.
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.