Jupiter

 Jupiter

Hubble’s September 4th photo of Jupiter displays the ever-changing landscape of its turbulent atmosphere, where several new storms are making their mark, and the pace of color changes near the planet’s equator is continuing to surprise researchers.

The planet’s equatorial zone has remained a deep orange hue for a much longer time, compared to previous darkening episodes. While the equator has changed from its traditional white or beige appearance for a few years now, scientists were surprised to find the deeper orange color to persist in Hubble’s recent imaging, instead expecting the zone to lose its reddish haze layer.

Just above the equator, researchers note the appearance of several new storms, nicknamed “barges” during the Voyager era. These elongated red cells can be defined as cyclonic vortexes, which vary in appearance. While some of the storms are sharply defined and clear, others are fuzzy and hazy. This difference in appearance is caused by the properties within the clouds of the vortexes.  

Researchers also note that a feature dubbed “Red Spot Jr.” (Oval BA), below the Great Red Spot, where Hubble just discovered winds are speeding up, is still a darker beige color, and is joined by a string of white, anticyclonic storms to the south.

Credits

Science

NASA, ESA, Amy Simon (NASA-GSFC), Michael H. Wong (UC Berkeley)

Image Processing

Joseph DePasquale (STScI)

About The Object
Object Name Jupiter
Object Description Planet
Distance At the time of the observations, the planet was 4.045 AU from Earth (about 376 million miles) 
Dimensions Jupiter is approximately 89,500 miles across along its equator
About The Data
Data Description The HST observations include those from program (A. Simon)
Instrument WFC3/UVIS
Exposure Dates 04 Sep 2021
Filters F395N, F502N, F631N
About The Image
Color Info These images are a composite of separate exposures acquired by the WFC3 instrument on the Hubble Space Telescope. Several filters were used to sample medium wavelength ranges. The color results from assigning different hues (colors) to each monochromatic (grayscale) image associated with an individual filter. In this case, the assigned colors are: Blue: F395N, Green: F502N, Red: F631N
Compass Image Clear image of Jupiter's banding
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.