
Two powerful cameras aboard NASA's Hubble Space Telescope teamed up to capture the final stages in the grand assembly of galaxies.
The photograph, taken by the Advanced Camera for Surveys (ACS) and the revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS), shows a tumultuous collision between four galaxies located 1 billion light-years from Earth. The galactic car wreck is creating a torrent of new stars.
The tangled up galaxies, called IRAS 19297-0406, are crammed together in the center of the picture. IRAS 19297-0406 is part of a class of galaxies known as ultraluminous infrared galaxies (ULIRGs). ULIRGs are considered the progenitors of massive elliptical galaxies.
ULIRGs glow fiercely in infrared light, appearing 100 times brighter than our Milky Way Galaxy. The large amount of dust in these galaxies produces the brilliant infrared glow. The dust is generated by a firestorm of star birth triggered by the collisions.
IRAS 19297-0406 is producing about 200 new Sun-like stars every year - about 100 times more stars than our Milky Way creates. The hotbed of this star formation is the central region [the yellow objects]. This area is swamped in the dust created by the flurry of star formation.
The bright blue material surrounding the central region corresponds to the ultraviolet glow of new stars. The ultraviolet light is not obscured by dust. Astronomers believe that this area is creating fewer new stars and therefore not as much dust.
The colliding system [yellow and blue regions] has a diameter of about 30,000 light-years, or about half the size of the Milky Way. The tail [faint blue material at left] extends out for another 20,000 light-years.
Astronomers used both cameras to witness the flocks of new stars that are forming from the galactic wreckage. NICMOS penetrated the dusty veil that masks the intense star birth in the central region. ACS captured the visible starlight of the colliding system's blue outer region.
IRAS 19297-0406 may be similar to the so-called Hickson compact groups - clusters of at least four galaxies in a tight configuration that are isolated from other galaxies. The galaxies are so close together that they lose energy from the relentless pull of gravity. Eventually, they fall into each other and form one massive galaxy.
This color-composite image was made by combining photographs taken in near-infrared light with NICMOS and ultraviolet and visible light with ACS. The pictures were taken with these filters: the H-band and J-band on NICMOS; the V-band on the ACS wide-field camera; and the U-band on the ACS high-resolution camera. The images were taken on May 13 and 14.
Credits
NASA, the NICMOS Group (STScI, ESA), and the NICMOS Science Team (University of Arizona)About The Object | |
---|---|
Object Name | IRAS 19297-0406 |
Object Description | Ultraluminous Infrared Galaxy (ULIRG) |
R.A. Position | 19h 32m 22.39s |
Dec. Position | -4° 0' 2.0" |
Constellation | Aquila |
Distance | About 1 billion light-years (300 Mpc) |
Dimensions | This image is about 15 arcseconds (22 kiloparsecs or 72,000 light-years) wide. |
About The Data | |
Data Description | Principal Astronomers: A. Fruchter, B. Mobasher, and A.Schultz (STScI) |
Instrument | HST>NICMOS/NIC2 |
Exposure Dates | May 13-14, 2002, Exposure Time: 4 hours |
Filters | NICMOS/NIC3: F110W (J-band), F160W (H-band) ACS/WFC: F606W (V) ACS/HRD: F330W (U) |
About The Image | |
Compass Image | ![]() |
About The Object | |
---|---|
Object Name | A name or catalog number that astronomers use to identify an astronomical object. |
Object Description | The type of astronomical object. |
R.A. Position | Right ascension – analogous to longitude – is one component of an object's position. |
Dec. Position | Declination – analogous to latitude – is one component of an object's position. |
Constellation | One of 88 recognized regions of the celestial sphere in which the object appears. |
Distance | The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs. |
Dimensions | The physical size of the object or the apparent angle it subtends on the sky. |
About The Data | |
Data Description |
|
Instrument | The science instrument used to produce the data. |
Exposure Dates | The date(s) that the telescope made its observations and the total exposure time. |
Filters | The camera filters that were used in the science observations. |
About The Image | |
Image Credit | The primary individuals and institutions responsible for the content. |
Publication Date | The date and time the release content became public. |
Color Info | A brief description of the methods used to convert telescope data into the color image being presented. |
Orientation | The rotation of the image on the sky with respect to the north pole of the celestial sphere. |