Follow-Up Observations Show Potential Planet TMR-1C is Really a Star

 Follow-Up Observations Show Potential Planet TMR-1C is Really a Star

This NASA Hubble Telescope near-infrared image of newborn binary stars (image center) reveals a long thin nebula pointing toward a faint companion object (bottom left) which could be the first extrasolar planet to be imaged directly.

The brightest objects in the image are the binary protostars, which illuminate an extended cloud of gas and dust (image center) from which the stars formed. So much dust surrounds these protostars that they are virtually invisible at optical wavelengths. However, near-infrared light penetrates the overlying dust, revealing the newborn stars within. The faint multicolor cross extending from the neighborhood of the binary is an artifact produced when HST observes bright stars.

At lower left there is a point of light many times fainter than the binary. Theoretical calculations indicate that this companion is much too dim to be an ordinary star; instead, a hot young protoplanet several times the mass of Jupiter is consistent with the observed brightness. The candidate protoplanet appears at a distance of 130 billion miles from the binary (1400 times the Earth's distance from the Sun). A bright streak of nebulosity extends from the binary toward the faint companion, possibly indicating that the protoplanet was ejected from the binary system.

Current models predict that very young giant planets are still warm from gravitational contraction and formation processes, with temperatures as high as a few thousand degrees Fahrenheit. This makes them relatively bright in infrared light compared to old giant planets such as Jupiter. Even so, young planets are difficult to find in new solar systems because the glare of the central star drowns out their feeble glow. Young planets ejected from binary systems would therefore represent a unique opportunity to study extrasolar planets with current astronomical technology.

Credits

S. Terebey (Extrasolar Research Corp.) and NASA

About The Object
Object Name TMR-1C
R.A. Position 04h 39m 14.2s
Dec. Position 25° 53' 11.9"
About The Data
Data Description The members of the research team include Susan Terebey (Extrasolar Research Corp.), Dave Van Buren, Deborah L. Padgett, Jet Propulsion Lab (JPL), Pasadena, CA, Terry Hancock (Extrasolar Research Corp.), and Michael Brundage, JPL.
Instrument HST>NICMOS
Exposure Dates August 4, 1997
Filters The image was taken in three wavelengths: 1.6, 1.9, and 2.05 microns.
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.