Comet-Like Knots Around a Dying Star in the Helix Nebula

 Comet-Like Knots Around a Dying Star in the Helix Nebula

These gigantic, tadpole-shaped objects are probably the result of a dying star's last gasps. Dubbed "cometary knots" because their glowing heads and gossamer tails resemble comets, the gaseous objects probably were formed during a star's final stages of life.

Hubble astronomer C. Robert O'Dell and graduate student Kerry P. Handron of Rice University in Houston, Texas discovered thousands of these knots with the Hubble Space Telescope while exploring the Helix nebula, the closest planetary nebula to Earth at 450 light-years away in the constellation Aquarius. Although ground-based telescopes have revealed such objects, astronomers have never seen so many of them. The most visible knots all lie along the inner edge of the doomed star's ring, trillions of miles away from the star's nucleus. Although these gaseous knots appear small, they're actually huge. Each gaseous head is at least twice the size of our solar system; each tail stretches for 100 billion miles, about 1,000 times the distance between the Earth and the Sun. Astronomers theorize that the doomed star spews hot, lower-density gas from its surface, which collides with cooler, higher-density gas that had been ejected 10,000 years before. The crash fragments the smooth cloud surrounding the star into smaller, denser finger-like droplets, like dripping paint.

This image was taken in August, 1994 with Hubble's Wide Field Planetary Camera 2. The red light depicts nitrogen emission ([NII] 6584A); green, hydrogen (H-alpha, 6563A); and blue, oxygen (5007A).

Credits

C. Robert O'Dell and Kerry P. Handron (Rice University), NASA

About The Object
Object Name Helix Nebula, NGC 7293
Object Description Planetary Nebula
R.A. Position 22h 29m 48.19s
Dec. Position -20° 49' 26.0"
Constellation Aquarius
Distance 450 Light Years
About The Data
Instrument HST>WFPC2
Exposure Dates August, 1994
Filters 500 nm [Oi], 656 nm [H-alpha], and 658 nm [Nii]
About The Image
Color Info Blue: Oxygen (5007A) Green: Hydrogen (H-alpha, 6563A) Red: Nitrogen ([NII] 6584A)
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.