
[LEFT] A NASA Hubble Space Telescope image of the galaxy cluster CL1358+62 has uncovered a gravitationally-lensed image of a more distant galaxy located far beyond the cluster. The gravitationally-lensed image appears as a red crescent to the lower right of center. The galaxy's image is brightened, magnified, and smeared into an arc-shape by the gravitational influence of the intervening galaxy cluster, which acts like a gigantic lens.
Exact measurement of the distance from spectroscopic observations with the W. M. Keck Observatory in Hawaii show the lensed galaxy is the farthest ever seen. Its light is only reaching us now from a time when the universe was but 7% its current age of approximately 14 billion years. This places the young galaxy as far as 13 billion light-years away. The lensing foreground cluster is 5 billion light-years from us.
[UPPER RIGHT] A close-up of the gravitationally-lensed image shows why astronomers are excited about this unique opportunity to study the distant galaxy's structure. The stretched-out image reveals tiny knots of vigorous starbirth activity. This provides a first detailed look at the early construction phase of a galaxy undergoing formation.
[LOWER RIGHT] A theoretical model of the cluster lens is used to "unsmear" the gravitationally-lensed image back into the galaxy's normal appearance. The corrected image gives a highly magnified view of the distant galaxy with detail 5-10 times smaller than Hubble alone can provide. It clearly shows several bright, very compact regions of intense star formation. These starburst regions are as 700 light-years across. The knots are so bright they indicate bursts of star formation taking place at a much faster rate than seen in most galaxies at the present time.
The image was taken with Hubble's Wide Field Planetary Camera-2 on January 13, 1996. The true color rendition was created from separate exposures taken through a red and a near-infrared filter (the F606W and F814W filters). The image on the left is 64 arcseconds wide, that on the upper right is 10 arcseconds wide, while that at lower right is only 2 arcseconds wide.
Credits
Marijn Franx (University of Groningen, The Netherlands), Garth Illingworth (University of California, Santa Cruz) and NASAAbout The Object | |
---|---|
Object Name | CL1358+62 |
R.A. Position | 13h 59m 54.3s |
Dec. Position | 62° 30' 36.0" |
About The Object | |
---|---|
Object Name | A name or catalog number that astronomers use to identify an astronomical object. |
Object Description | The type of astronomical object. |
R.A. Position | Right ascension – analogous to longitude – is one component of an object's position. |
Dec. Position | Declination – analogous to latitude – is one component of an object's position. |
Constellation | One of 88 recognized regions of the celestial sphere in which the object appears. |
Distance | The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs. |
Dimensions | The physical size of the object or the apparent angle it subtends on the sky. |
About The Data | |
Data Description |
|
Instrument | The science instrument used to produce the data. |
Exposure Dates | The date(s) that the telescope made its observations and the total exposure time. |
Filters | The camera filters that were used in the science observations. |
About The Image | |
Image Credit | The primary individuals and institutions responsible for the content. |
Publication Date | The date and time the release content became public. |
Color Info | A brief description of the methods used to convert telescope data into the color image being presented. |
Orientation | The rotation of the image on the sky with respect to the north pole of the celestial sphere. |