Eta Carinae: A Star On the Brink of Destruction

 Eta Carinae: A Star On the Brink of Destruction

A NASA Hubble Space Telescope "natural color" image of the material surrounding the star Eta Carinae, as imaged by the Wide Field Planetary Camera 2 (WFPC-2).

The Camera was installed in the Hubble Space Telescope during the STS-61 Hubble Servicing Mission. The WFPC-2 optically corrects for the aberration of the telescope's primary minor, restoring the telescope's vision to its originally planned clarity.

Eta Carinae has a mass of approximately 150 times that of the sun, and is about 4 million times brighter than our local star, making it one of the most massive and most luminous stars known.

Eta Carinae is highly unstable, and prone to violent outbursts. The last of these occurred in 1841, when despite its distance (over 10,000 light years away) Eta Carinae briefly became the second brightest star in the sky.

Pre-servicing mission HST observations taken with the WF/PC-1 reveled new detail in the rapidly expanding shell of material which was ejected during the last century's outburst. However, the earlier effects of HST's spherical aberration obscured the structure of the material very near Eta Carinae itself.

The clear view of Eta Carinae now provided by WFPC-2 dramatically demonstrates the ability of HST to reliable study faint structures near bright objects.

The picture is a combination of three different images taken in red, green, and blue light. The ghostly red outer glow surrounding the star is composed of the very fastest moving of the material which was ejected during the last century's outburst. This material, much of which is moving more than two million miles per hour, is largely composed of nitrogen and other elements formed in the interior of the massive stir, and subsequently ejected into interstellar space.

The bright blue-white nebulosity closer in to the star also consists of ejected stellar material. Unlike the outer nebulosity, this material is very dusty and reflects starlight. The new data show that this structure consists of two lobes of material, one of which (lower left) is moving toward us and the other of which (upper right) is moving away. The knots of ejected material have sizes comparable to that of our solar system.

Previous models of such bipolar flows predict a dense disk surrounding the star which funnels the ejected material out of the poles of the system. In Eta Carinae, however, high velocity material is spraying out in the same plane as the hypothetical disk, which is supposed to be channeling the flow.

This is quite unexpected. The WFPC-2 observations of Eta Carinae raise as many questions as they answer.

Credits

Credit: NASA, ESA, and J. Hester (Arizona State University)

About The Object
Object Name Eta Carinae
R.A. Position 10h 45m 3.59s
Dec. Position -59° 41' 4.26"
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.