Infrared Image Shows Brown Dwarfs and Infant Stars in Orion Nebula's Trapezium Cluster

 Infrared Image Shows Brown Dwarfs and Infant Stars in Orion Nebula's Trapezium Cluster

Probing deep within a neighborhood stellar nursery, NASA's Hubble Space Telescope uncovered a swarm of newborn brown dwarfs. The orbiting observatory's near-infrared camera revealed about 50 of these objects throughout the Orion Nebula's Trapezium cluster [image at right], about 1,500 light-years from Earth.

Appearing like glistening precious stones surrounding a setting of sparkling diamonds, more than 300 fledgling stars and brown dwarfs surround the brightest, most massive stars [center of picture] in Hubble's view of the Trapezium cluster's central region. All of the celestial objects in the Trapezium were born together in this hotbed of star formation. The cluster is named for the trapezoidal alignment of those central massive stars.

Brown dwarfs are gaseous objects with masses so low their cores never become hot enough to fuse hydrogen, the thermonuclear fuel stars like the Sun need to shine steadily. Instead, these gaseous objects fade and cool as they grow older. Brown dwarfs around the age of the Sun (5 billion years old) are very cool and dim, and therefore are difficult for telescopes to find. The brown dwarfs discovered in the Trapezium, however, are youngsters (1 million years old). So they're still hot and bright, and easier to see.

This finding, along with observations from ground-based telescopes, is further evidence that brown dwarfs, once considered exotic objects, are nearly as abundant as stars. The image and results appear in the Sept. 20 issue of the Astrophysical Journal.

The brown dwarfs are too dim to be seen in a visible-light image taken by the Hubble telescope's Wide Field and Planetary Camera 2 [picture at left]. This view also doesn't show the assemblage of infant stars seen in the near-infrared image. That's because the young stars are embedded in dense clouds of dust and gas. The Hubble telescope's near-infrared camera, the Near Infrared Camera and Multi-Object Spectrometer, penetrated those clouds to capture a view of those objects. The brown dwarfs are the faintest objects in the image. Surveying the cluster's central region, the Hubble telescope spied brown dwarfs with masses equaling 10 to 80 Jupiters. Researchers think there may be less massive brown dwarfs that are beyond the limits of Hubble's vision.

The near-infrared image was taken Jan. 17, 1998. Two near-infrared filters were used to obtain information on the colors of the stars at two wavelengths (1.1 and 1.6 microns). The Trapezium picture is 1 light-year across. This composite image was made from a "mosaic" of nine separate, but adjoining images. In this false-color image, blue corresponds to warmer, more massive stars, and red to cooler, less massive stars and brown dwarfs, and stars that are heavily obscured by dust.

The visible-light data were taken in 1994 and 1995.

Credits

Near-infrared image: NASA; K.L. Luhman (Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.); and G. Schneider, E. Young, G. Rieke, A. Cotera, H. Chen, M. Rieke, R. Thompson (Steward Observatory, University of Arizona, Tucson, Ariz.)
Visible-light image: NASA, C.R. O'Dell and S.K. Wong (Rice University)

About The Object
Object Name Orion Nebula, M42, NGC 1976
R.A. Position 05h 35m 17.29s
Dec. Position -5° 23' 27.99"
About The Object
Object Name A name or catalog number that astronomers use to identify an astronomical object.
Object Description The type of astronomical object.
R.A. Position Right ascension – analogous to longitude – is one component of an object's position.
Dec. Position Declination – analogous to latitude – is one component of an object's position.
Constellation One of 88 recognized regions of the celestial sphere in which the object appears.
Distance The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs.
Dimensions The physical size of the object or the apparent angle it subtends on the sky.
About The Data
Data Description
  • Proposal: A description of the observations, their scientific justification, and the links to the data available in the science archive.
  • Science Team: The astronomers who planned the observations and analyzed the data. "PI" refers to the Principal Investigator.
Instrument The science instrument used to produce the data.
Exposure Dates The date(s) that the telescope made its observations and the total exposure time.
Filters The camera filters that were used in the science observations.
About The Image
Image Credit The primary individuals and institutions responsible for the content.
Publication Date The date and time the release content became public.
Color Info A brief description of the methods used to convert telescope data into the color image being presented.
Orientation The rotation of the image on the sky with respect to the north pole of the celestial sphere.